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Abstract

The minimum uncertainty and other relations are evaluated in the framework of the
coherent states of the damped harmonic oscillator. It is shown that the coherent states of
the damped harmonic oscillator are the squeezed coherent states of the simple harmonic
oscillator. The unitary operator is also constructed, that connects coherent states between
damped harmonic and simple harmonic oscillators.

1 Introduction

Recently there has been a surge of interest in the minimum uncertainty state which is one of the
fundamental features of quantum mechanics(1]. Introducing the canonical conjugate variables for
the harmonic oscillator, position z and momentum p in the appropriate dimensionless units, the
coherent states can be described by a symmetric uncertainty in z and p with Ap- Az =1 and
Az = Ap = 1. From the restriction of the uncertainty principle, Az - Ap, we may consider a more
precise position ‘Az < 1 and a more uncertain momentum Ap > 1. These states, i.e., one variable
is squeezed at the expense of its conjugate, are called squeezed states or minimum uncertainty
states, which can not be obtained from the optical sources generating the coherent states(2], but
from two-photon coherent states[3] including ordinary coherent states as a special case. This kind
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of change in the variable corresponds to the measurement of either z or p in a rotating frame in
phase space. This new space is the quadrature phase, that is directly related with a homodyne or
heterodyne detection. Recently, two-photon devices have produced the squeezed states of light[4]
with high precision interferometers(5)].

The two-photon coherent states or minimum uncertainty can be distinguished from a coherent
state in many ways, i.e., different photon processes, quantum statistical properties and coherence
properties. The coherent state can be generated from one-photon stimulated processes, while the
two-photon coherent states are generated from two-photon processes for two photons of the same
mode. For the photon annihilation operator with frequency w, we may define the coherent states
|la>(@]a>=ala >), and for the case of a two-photon process, a self-adjoint operator
a = a, + ia; yields < Aa} >=< Ad} 1/4 for the coherent state | a >, as derived in Sec. 3
below. However, the states with a more precise quantity < Aa? >< 1/4 and a more uncertain
< Aad >» 1/4 are permltted by the uncertainty < Aa? >< Aa} >2> 1/16 with minimum
uncertainty < Ae? >< Aaj >= 1/16. This 1nd1cates t.hat the ordinary coherent states are
different from the minimum uncertainty.

The purpose of this paper is to show that our prevxous results[6] of the coherent states for
the damped harmonic oscillator (DHO) are the squeezed states of simple harmonic oscillator

(SHO). Introducmg the Caldirola-Kanai Hamiltonian[7], we review the propagator, wave function,
uncertainty relation and coherent states[8] of the Caldirola-Kanai Hamiltonian in Sec. 2. In Sec.
3 we define the self-adjoint operator and construct the coherent states for DHO. We determine the
properties and structure of the unitary transformation of the coherent states of DHO and SHO in

Sec. 4. The results and dxscusnon will be g:ven in Sec. 5 together with graphs.

2 Propagator and Wave Functidn of DHO
We introduce the Caldirola-Kanai Hamiltonian for DHO as

1
H =2 2”m +e"'s ,,,"‘33’2 L )

where 7 is the pos:twe consta.nt As we have develdﬁéd the quantum theory or damped driven
harmonic oscillator by the path integral method|8], the propagator and wave function of DHO are
given as

z 1V
mwe
K(z,t;20,0) = [m] P[ {‘7(3 - e"'z?%)
sii‘:t((zze"‘ + z3) coswt — 2e¥ 220)}] , (2)
N . 1
¥n(2,) = s He(D2) exp [—z(n +3) 00t (5L + cotwt) - Az’] , (3)

where
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:fl
mwi] €
v = [
2 _ a2 T
) = 07 %in wt+§w-sm2wt+l, (4)
Alt) = %{l+i[(£+g)sin’ut+81—:sin2wt]},
mw\1/? ¥
D(t) = (T) Ok

To construct the coherent states (| a >) for DHO, we define the annihilation operator a and
creation operator at as

a = ilh(nz = up) , (5)
a = %(#'p -7'z), (6)
where u(t) and n(t) are
p(t) = %(ReA)"”zexp {icot'1 (-é—l- + cotwt)} , (N
n(t) = \/iih%exp {icot" (% +cot wt)} . (8)

Equations. (5)-(6) satisfy the commutation relation [a,a'] = 1, which corresponds to [z,p] = ih.
The coherent states in the coordinate representation | z > can be expressed by

1 1 1u*
<z|a>=(2rup)exp [—E-h-%z’ + -E-z -3 la|? -—%a’] : (9)

With the use of Egs. (5)-(8) the uncertainty relation can be easily obtained as

K
(azap) = lulinl=2s
/2
A 3 2 !
= -2-{1+[(8“77+%)sin’wt+8%sin2wt] } (10)

Here, Eq. (10) is the minimum uncertainty corresponding to the (0,0) states. All of the formulas
derived above reduce to those of simple harmonic oscillator (SHO) when v = 0. The propagator
[Eq. (2)] bas a very similar form to those of Cheng[9] and others[10], but Eq. (3) is of a new form.
3 Two-Dimensional Self-Adjoint Operators

We introduce the dimensionless two self-adjoint operators

a=a;+ia;, ay=al, a3=a} (11)
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and the corresponding eigenstates
| a >=| ay >1 +1 | az >3, (12)

where o, and a; are real. We refer to (a1,a3) or (a1, a3) as the quadrature components, and the
relation between Egs. (11) and (12) are given by

alag> = ol >y,
(13)
a;la:); = 03]03)3 .
Using Eqs. (5)—(§) we may express Eq. (11) as
1
a = “ (n=n")z+ (W -mp, (14)
6 = 55[—(*1 +07)z+ (s + 470 - (15)
Rewriting Eqs. (14) and (15) as the representation of z and p, we get
z = (p+pt)a—i(p—pla, (16)
p = (n+na—i(n—naz. (17)

With the use of the wave function expressed as Eq. (3) and through the following definition
< Aa? >ma=< (ax" < a >m.n)(al— <& >m,n)‘ Zman oy (18)

we obtain the uncertainty relations at various states as

< Aa? >p420< Aa} Sny2n = llﬁ(n +2)(n+1) min, -;- , (19)
<A@ >pp1n< Add Sapin = —(n +1)2 T 11—6 . (20)

<Aadd>.n<Add>nn = -1—6(211 +1)? il 11_6 , (21)
< A} >p_1n< Aa3 >po1n = Tlgn’ my % , (22)
< AG >p_3n< AG Spogp = llsn(n _ 1) % . (23)

Averages in the coherent states can be defined as

<ala|la>=<a>=a, (24)
and thus we have :

<ay >= -2-(0 +a')=a, (25)

< a3 >= %(a' -a)=az, (26)
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<alay > = a¥+-i-, (27)
<aja;> = ai+ % ) (28)
<Adl> = <Adi>= % ) (29)
and the following o, representation
2\1/4 i
<o la>= (;) exp [—(a; -a) + za!ma] , (30)

where a; | o) >=a} | a >.

4 Unitary Transformation

Now we will construct the unitary operator that transforms the coherent states for SHO to that
of the two-photon coherent state of DHO and vice versa. From Eqs. (5)-(6), we can easily show
the relation

a = vag—Aa}, (31)
at = =Xao+va), (32)

where the expressions of ao and a} by a and a' are

a = v'a+ia', (33)
) = Ma+va', (34)

for a pair of numbers A and v satisfying
lvP=1AP=1. (35)

We take the values of v and ) as the following:
SV # \/2mwoﬁn
= -2]? wioci! [ie"" +(1-iy1- ﬂ’)] exp [i cot'l(% + coswt)]

1 w® ' ]
e (L - JLe¥ -L
5 [ —e (2w sinwt + coswt) woe (coswt 50 sin wt) (36)

) w? -3 w3 ¥ .
+2 [ e sinwt ‘/woe (4«)’ sinwt + sinwt)
= )]

1 [w® ot W 1 , 5
= — |—¢~ 24 — gl — t wi -1
% [we +2+—F exp [icot™' (— + cotwt) + tan (T_-we‘7'+l
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V= TRn g
= 1 “¥ [ie“" —(14+iy1- ﬂ’)] exp [a’ oot“(—;—d + cotwt)]

26\ wo
_ 1 wo -? ¥y . W i[ 7 .
= E[Vwe (%slnut-l-coswt) woe (coswt 2wslnwt) (37)
+i u_JEe'%! sin wt — -‘ie?(‘y—zsinwt + coswt)
2 w Wwo 4u?

1 [wo e o 2]1/2 T e | G VT8
= —|— - —_ t o — twt) +t ——— .

% [we 2+“’°,ﬂ exp |ico (2w+cow)+a.n ry=
Since a canonical transformation is defined as any transformation which keeps the commutator
invariant, we can confirm that the transformation of variables from (ao, a}) to (a,a') given in Egs.
(31)-(32) and (35) is a canonical linear transformation. According to a theorem of Von Neuman-
n[11], there exists a unitary operator U, which yields all the linear canonical transformations,
ie.,

b(ao, al) = U,aoU:[ = vap - »\al . (38)

The commutation relation [[a,a'] = l] and unitary transformation [Eq. (38)]) provide a with
properties exactly similar to those of ag. Therefore, we may obtain the usual properties of a as

N = a*a, (39)
Nlin> = n|n>, N|0>=0, (40)

and a coherent state for DHO is given by
la>=Usla>o, (42)
where | @ > is a coherent states for SHO. The representation of coherent states for DHO in the
SHO space is given by
_ 1 1 2 1 D . |
<a|a>o—ﬁexp -2|a| —2|ao| +2u_ao 2V_+u‘aao , (43)

where the coefficients are
1 —v%
W eactpep)
6 = tan-! [___(i sinu.at +coswt)V/BT - T+ (Be™™ '+ 1)sinwt ] ‘
(B¢ + 3L sinwt + coswt)(Re~7 + 1) — sin wt/pE = 1
A 1 (wge"" — 2wwy + 4.‘»2/32)1/2 exp {i tan-! [ VA -1 ]} , (44)

2° T2 \wlemt + o + w?B3 2 - f7 — (Bm)Te—2

X

2v° 2
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Ao 1 wie ™ — 2w + w?f? 1/2ex i tap™! ue-wt\/B7—'
s 2 \wie " + 2wwg + wiP? P ,92 (2a)2e-2m ’
2£ 1200
v (2+m i’-'+.£ﬂ2)’/z
w ¢ wo

The wave function < n | a > for a coherent state of DHO in the state of SHO can be obtained

from Eq. (43). Using the following formula with the nth Hermite polynomial,

e2:l—t’ Z (Z) 't '< 0o ,

1
n-On

and through the similar derivation of Eq. (9), we can easily obtain

<nla> = 1 V% whe™™ = D + wi?] ¢
° V2rn! (Re-" +2 4+ £82) [wie ™ + 2wo + w?f?

A.
X Hal(~20) o] exp(~3 | a ' =5 o),

where the coefficients in Eq. (46) are given as

_ 1 Wo W 1/4
~2v)71? [ e +24+ —p° '“—2+—-’] s,
(~203) 2% (2 Z52 =5 e
8., = tan-! VE-T+ smwt
’ VE-1-A,sinwt’
4 \/(%e"")’-i-l——ﬂ’—2%c""+,/(%e""+l)’+l -p?
va = )

Bm\

By = (e ""+1)(—-e""—1)—(—e""'+1)2\/(—e“7‘—1)2+l—ﬂ’
(R 4 1) sqr(DeT — 1)1 41— g7
W W

AR =1 41— (e 4172 4 1- 7).
If we represent the annihilation operator ao in the state of DHO, we get

<ag>=<alap|a>=v'a+ o’ =ay +ia43,
from the definition of Eq. (18) we obtain the quantities

< Adj, >

<al(a01—'ad,)2|a>
1

= - AR
veal

mMwo

o | u
lwo -yt g2
15 £,

|2
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1
<Adh> = —|u—,\|2

— 2
ﬂz
< Aa}, >< Aa}, —ﬂ’ (51)

<Aad> = |AP
1 [ﬁc-"' —24 iﬂ’]m (52)
2% lw wo ‘

The repetition of representation for the annihilation operator a in the state of SHO yields

<a>q <agla]ap>=vag— Aag = ap = oy +ia; , (53)

<Aa}> = <ag|(ar—am)|ao>,

= {1 =al .
_ 1w . g W Y . ,]
= 3 [we sin wt+w°e (coswt 2wsmwt) , (54)
2 1 .
<A¢12>o = le/ +A|
_ 1 iwp —ty Y 2, W o2 72
= 3 [we (%smwt+coswt) +ch sin wt(4w2 +1)] , (55)
< Adl >o< Add >y = {[ e z—w-smwt +cosc..vt)2
+ wioe"(coswt-zlwsmwt)( +l)sunwt]2 (56)

a
+ [cos2wt — ﬁsin2 wi]’},

<Ad*>y = |AP

1 wo W 222

— (Rt _9 4 Z g2y 7
(Lem -2+ 2g7) (57)

In Eq. (42) we have defined the unitary operator that is a linear canonical transformation.

From this equation we have

<Qo|ﬂ> = <00|UL|ﬁQ>
= Ur(Bo,ag) <ao| 8> . (58)
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A direct application of the following formulas(12]

CC‘ACQBCQC = exp(clA + B+ caC + %{6162[14, B] + C163[A, C] + Cgc:;[B, C]}

3

- .‘ . - - ~ ] ‘c
+ZE[A,[A,,[A,[B,[B,,[B,C]]('—:'lc%:’—l)" (59)
=] j=1 ° :
eerel gmalagne’ exp{c1a'® + czata + cza® - (a" + a'a + aa' + a?)
L b
+ ((j +Jl))‘ [—2c1c;;(ata + aa') + 8ccsa’)})
j=1 '
: i ~2c2 _
= exp|(c; — 8ccs 2 l_ c,cz)a"(Cg —acs+2cc3 1)afa (60)
Ca 2C2
-2c _ 1
+(—C1C3 + 2016:;'e—2——)(1¢11 + (Cl et 6263)02]
C2
gives the unitary operator in the | a >¢ representation,
1 A a1 A®
(n) . - = RANPN s - . o .2
Ul (a0, 09) = ﬁeXP [2yao + (u 1)agao 2u°o] (61)
. A g t A" g
= T exp [ 5% ~ In vagao 55 %0 | (62)
1
= -\/77; exp [A..af,2 + B.alao + Cuaoa) + D..ag] , (63)
where the coefficients are
A 2/ 2\ (r\1-4
A= g lvts (2—) (2—) Yk
A
= —lpy - 22 (] -2
B, Inv 2lnu(l v), (64)
At
Co = -3,
A
Do = shp(=¥)

5 Results and Discussion

Starting from the coherent states of DHO, we have shown that these states are the squeezed states
of SHO and vice versa. We have also evaluated the averages of the operators o, a, Aa} and Adj
in both spaces of DHO and SHO. We have constructed the unitary operator which transforms the
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A(t)

FIG. 1. f(t) as a funtion of wt at various values of z = vy/w.

coherent states (| a >¢) to the coherent states ( | @ >), i.e., | a>=U, | a >o.

Figure 1 illustrates the behavior of 3(t) [Eq. (10)] as a function of t and z = v/w. Asz
increases, the amplitude of the oscillation becomes large. For the condition ¥ € wp, w =~ wy and
vy — 0, A(t) approaches to unity, with DHO reducing to SHO. Therefore, the uncertainty relation
for the (n,n) state [Eq. (10)] oscillates with the period .

From the definition of the self adjoint operator and Eq. (18), we have evaluated the minimum
uncertainty for various states in Eqgs. (19)-(23). The minimum uncertainties for the diagonal and
first off-diagonal states have the value of 1/16, and the minimum values for the second off-diagonal
states are 1/8. For < Aa? >« 1/4, the corresponding canonical part results in more uncertainty.

The creation and annihilation operators (a! and a) in Sec. 4 can be shown under the condition
| v |* = | A |*= 1. The operators (a}, ao) are transformed to the operators (a',a) through unitary
operator U,. The behaviors of | v | and | A | are depicted in Figures 2 and 3, respectively. We
can confirm that | v | oscillates periodically in general, but | A | behaves in a more complicated
fashion, and as z = v/w increases to larger than unity, the oscillation decays rapidly .

The average of Aad, and Ag}, in the states of DHO are given in Egs. (49)-(50). < Aad, >
oscillates with exponential decrease, while < Aa2, > does so with exponential increase. The
minimum value of < Aa?, >< Ad?, > is 1/16 at 4(t) = 1. The averages of Aa? and Aa3 in the
space of SHO are evaluated in Eqs. (54)-(55). The uncertainty relation [Eq. (56)] has a minimum
valueof 1/16 at t = sin~! nr or t = cos™!(7/2w—4w/7), and maximum value at 32 = (wo/w)?e~?"*
(Figure 4).

Equations (61)-(63) represent the unitary operator which transforms | a >0 to | @ > and vice
versa. Therefore, we can obtain the scaled state through < z ja >=<z |U | a >.

In conclusion, we have shown the uncertainties and their relations in the states of SHO and
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FIG. 2. | v | versus wt at various values of v/w.
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FIG. 3. | A | versus wt at various values of v/w.
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FIG. 4. Uncertainty relations versus wt.

DHO. We have also shown that there exists a unitary operator to connect the coherent states of
SHO with those of DHO.
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